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Abstract

Resolutions are a topic of interest in modern algebra and are used to study modules. Reso-
lutions are useful since they often encode information about a module, including different
invariants such as the projective dimension, regularity, and Hilbert series of a given mod-
ule. Another object of interest in commutative algebra is the Rees algebra, which captures
information about an ideal I and its higher powers. In this thesis, we relate the two top-
ics by looking at the minimal graded free resolution of the Rees algebra of an ideal I and
taking degree-d strands of this resolution to give a graded free resolution of Id. We give
a bound on the regularity of Id through this process. We also provide a detailed example
going through the process of trimming the graded free resolution to obtain the value of the
regularity from the degree-d strand.
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Introduction

Linear algebra, the study of vector spaces and linear transformations, is of interest due to its
applicability to different fields of study. The concepts in linear algebra can be generalized to
the theory of modules. For example, finite dimensional vector spaces generalize to finitely
generated modules. However, studying the generators of a given module does not provide
the full picture of the structure of the module as there are often relations between these
generators. Furthermore, there may be relations between the relations, and so on.

To efficiently study the structure of a finitely generated module from its generators,
David Hilbert introduced the idea of syzygies and associated free resolutions to finitely
generated modules. Naively, a free resolution is a sequence of modules and maps con-
structed from the following process: Take a set of generators {mi} for a finitely generated
graded moduleM and map a graded free module F0 →M by sending basis elements of F0

to the generators {mi}. Let M ′ be the kernel of this map, i.e., it is the submodule contain-
ing the relations between the generators of M . By Hilbert’s Basis Theorem, M ′ will also
be finitely generated and so take a set of generators {m′i} of M ′ and take a free module F1

and map its basis elements onto the generators of M ′ ⊆ F0 and repeat this process.
If we pick out the minimal number of generators necessary at each step in the process

of constructing a free resolution, we obtain a minimal free resolution of the module. These
generators of the kernels of the maps above in the minimal free resolution of M are called
the syzygies of M .

The minimal free resolution of a module introduces different invariants of the module,
namely the graded Betti numbers and the Castelnuovo-Mumford regularity, both of which
are topics of research in modern mathematics.

In 1997, Swanson [Swa97] provided a linear upper bound for the regularity of powers
d of homogenous ideals I ⊆ A = k[x1, . . . , xn] in terms of d. Then in 1999, Cutkosky,
Herzog, and Trung in [CHT99] and Kodiyalam in [Kod00] extended Swanson’s work by
proving that the regularity of a homogenous ideal I is eventually equal a linear function of
d. The graded Betti numbers for a module (βij) are another invariant that is related to the
Castelnuovo-Mumford regularity and so a complete classification of the graded Betti num-
bers would be an interesting, albeit hopelessly difficult, problem to attempt. In 2008, Boij
and Söderberg published a paper [BS08], titled Graded Betti numbers of Cohen-Macaulay
modules and the multiplicity conjecture, where they had the idea of classifying the graded
Betti numbers up to a rational scalar. That is, instead of attempting to classify the (βij)
directly, they proposed to classify t · (βij) for some t ∈ Q. This idea can be pictured ge-
ometrically as a cone in a vector space over the rationals, where the extremal rays of the
cone correspond with the pure resolutions of the module. The linear combinations of these
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pure resolutions are called the Boij-Söderberg decompositions of the module.
In 2014, Whieldon proved that for homogeneous ideals I generated by forms of the

same degree r, that there was a stabilization in the Betti tables for powers of ideals Id in the
sense that for all n ≥ N , for some large N , that βi,j+rn(Id) 6= 0 ⇐⇒ βi,j+rN(Id) 6= 0.
In 2019, Mayes-Tang in [May19] built on Whieldon’s result to show that there is a sta-
bilization in the Boij-Söderberg decomposition for Id for large enough d when I was a
homogenous ideal where all of its generators were the same degree.

In this thesis, we attempt to extend these recent results by studying free resolutions of
homogeneous ideals of A, and its powers, that are not generated by a single degree. We
originally would have also wanted to study the possible stabilization patterns in the Boij-
Söderberg decompositions of Id after an A-splitting, which introduces finitely many more
variables raised to integral powers, but this was hindered by unforeseen circumstances.

Computations were performed by hand and by Macaulay2.



Chapter 1

Necessary Background

The central objects of study in linear algebra are vector spaces over fields. We can gen-
eralize this notion by introducing modules over rings. Indeed, as scalars in a vector space
come from a field, the scalars of a module come from a ring. Consequently, the reader
familiar with linear algebra will have had some experience working with modules, but as
fields provide more rigidity than rings in their respective structures, different nuances may
arise. For example, not all modules have a basis. This chapter treats the basics of modules,
which provide the necessary ideas and tools for this thesis.

1.1 Module Theory

Unless otherwise stated, all rings considered are assumed to be commutative rings with
identity. Let A be such a ring.

Definition 1.1.1. An A-module (M,+) is an abelian group with an action of A, i.e., a
map A ×M → M , denoted (a,m) 7→ am, such that for all m,n ∈ M and a, b ∈ A, the
following axioms are satisfied:

1. a(m+ n) = am+ an

2. (a+ b)m = am+ bm

3. (ab)m = a(bm)

4. 1Am = m.

Example 1.1.2. 1. If the ring A is a field, then the module M is a vector space over A.
2. Every ring is a module over itself.
3. If G is an abelian group, then G is a Z-module.
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Definition 1.1.3. LetM andN beA-modules. AnA-module morphism (orA-linear map)
is a map f : M → N such that for all m,n ∈M and a ∈ A, we have

f(m+ n) = f(m) + f(n)

f(am) = af(m).

Again, if A is a field, then a module morphism is simply a linear transformation between
vector spaces over A.

The set of all A-module morphisms from M to N is denoted as HomA(M,N) (or
simply as Hom(M,N) if there is no ambiguity of the base ring). Note that this set carries
a natural A-module structure if we define addition and scalar multiplication by

(f + g)(m) = f(m) + g(m)

(af)(m) = af(m)

for all m ∈M .

Definition 1.1.4. An isomorphism of A-modules M and N is a bijective A-module mor-
phism f : M → N . If there is an isomorphism M → N , we say M and N are isomorphic
and write M ∼= N .

Definition 1.1.5. A submodule N of M is a subgroup with respect to addition of M that is
closed under the action byA. That is, for all a ∈ A and n, n′ ∈ N , we have that n+n′ ∈ N
and an ∈ N as well.

Example 1.1.6. If we view the ring A to be a module over itself, all of the submodules of
A are precisely the ideals of A.

Example 1.1.7. If a ∈ A and M is an A-module, then aM = {am : m ∈M} is a sub-
module of M . If I is an ideal of A, then IM which the set of all finite linear combinations
of {am : a ∈ I,m ∈M} is a submodule of M .

Let M be an A-module and let N be a submodule of M . Since M is an abelian group,
N is a normal subgroup and so it is possible to define the quotient group M/N . To give
this group an A-module structure, we wish to give the canonical projection

π : M −→M/N

m 7−→ m+N
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the structure of an A-module morphism, i.e.

a(m+N) = aπ(m) = π(am) = am+N.

This leads us to the following definition:

Definition 1.1.8. Let M be an A-module and N be a submodule of M . The quotient
module M/N is the A-module

M/N = {m+N : m ∈M}

with the A-action given by a(m+N) = am+N for all a ∈ A.

Definition 1.1.9. If M and N are A-modules, then the direct sum of M and N is the
module

M ⊕N =
{

(m,n) : m ∈M,n ∈ N
}

with addition defined componentwise, and scalar multiplication defined a(m,n) = (am, an).

It is quite natural to extend this definition to families of modules. Moreover, similar
considerations hold for direct sum of finite set of modules but we must handle infinite sets
of modules with more caution.

Definition 1.1.10. Let {Mi}i∈I be a family ofA-modules. The direct product
∏

iMi is the
A-module whose elements are tuples (mi)i∈I while the direct sum

⊕
iMi is the A-module

consisting of all tuples (mi)i∈I such that all but finitely many mi are zero.

It is clear that the direct sum is a subset of the direct product.

Definition 1.1.11. Let f : M → N be an A-module morphism. The kernel of f is the set

ker(f) =
{
m ∈M : f(m) = 0

}
.

The image of f is the set
im(f) = f(M).

We note that both the kernel and the image are submodules of M and N , respectively. The
cokernel of f is the set

coker(f) = N/im(f)

and is a quotient module of N .

Theorem 1.1.12 (Isomorphism theorems for Modules). Let M be an A-module.



6 Chapter 1. Necessary Background

1. If f : M → N is a module morphism, then we have that M/ker(f) ∼= im(f).

2. If M ′′ ⊆M ′ ⊆M are modules, then

M/M ′′

M ′/M ′′
∼= M/M ′.

3. If N and N ′ are submodules of M , then N +N ′ is a submodule of M as well and we

also have an isomorphism

N/(N ∩N ′) ∼= (N +N ′)/N ′.

Proof. The proofs for modules and groups are very similar and are omitted here. See
[AM94], pages 18 and 19 for more details.

Definition 1.1.13. A sequence of A-modules and of A-module morphisms

· · · fi−1−−−→Mi−1
fi−−→Mi

fi+1−−−→Mi+1 −→ · · ·

is called a chain complex (or simply complex) if we have that fi+1 ◦ fi = 0 for all i. A
sequence is said to be exact at Mi if im(fi) = ker(fi+1). A complex that is exact at each
Mi is called an exact sequence. An exact sequence of the form

0 −→M ′ −→M −→M ′′ −→ 0

is called a short exact sequence.

Depending on context, it may be more convenient to write the complex in the reversed
order along with the arrows. That is, we will sometimes write the complex in Definition
1.1.13 as

· · · fi+1←−−−Mi+1
fi←−−Mi

fi−1←−−−Mi−1 ←− · · ·

We will freely reverse the complex without any comment.

Proposition 1.1.14. Let M,N be A-modules. Then

1. 0→M
φ−→ N is exact if and only if φ is injective.

2. M
φ−→ N → 0 is exact if and only if φ is surjective.

3. 0→M
φ−→ N → 0 is exact if and only if φ is an isomorphism.
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4. 0 → M ′ φ−→ M
ψ−→ M ′′ → 0 is a short exact sequence if and only if φ is injective, ψ

is surjective, and ψ induces an isomorphism coker(φ) ∼= M ′′.

Definition 1.1.15. Suppose we have a chain complex C. of A-modules

C. : · · · −→Mi+1
fi+1−−→Mi

fi−→Mi−1
fi−1−−→ · · ·

Since the composition of two maps is zero, we have

0 ⊆ im(fi+1) ⊆ ker(fi) ⊆Mi, for all i.

The ith homology module of C. is defined to be the quotient Hi(C.) = ker(fi)/im(fi−1).

Definition 1.1.16. The annihilator of an A-module M is

AnnA(M) = {a ∈ A : am = 0, ∀m ∈M} .

The annihilator of a module is an ideal of the base ring.

Definition 1.1.17. The Krull dimension of a ring A is defined to be

dim(A) = sup {k : p0 ( p1 ( · · · ( pk−1 ( pk, pi − prime, for all i}

Definition 1.1.18. The Krull dimension of an A-module M is defined to be

dim(M) = dim(A/Ann(M)).

Definition 1.1.19. LetA⊕n = A⊕ · · · ⊕ A︸ ︷︷ ︸
n−copies

. AnA-moduleM is finitely generated if there

exists a surjective A-module morphism A⊕n → M . Equivalently, M is finitely generated
if there exist m1, . . . ,mn such that for any m ∈M , we can represent m as a sum

m = a1m1 + a2m2 + · · ·+ anmn

for some a1, . . . , an ∈ A. If M is finitely generated by {m1, . . .mn}, and we also have that
a1m1 + · · ·+ anmn = 0 implies ai = 0 for all i, then we say that {m1, . . . ,mn} is a basis
of M .

If A is a ring, then A is a module over itself, and moreover, admits a basis consisting of
the unit element 1A.
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Definition 1.1.20. Let I be some indexing set and for each i ∈ I , let Ai = A, viewing each
Ai as an A-module over itself. A free module is a module M that admits a basis, i.e., is of
the form

M =
⊕
i∈I

Ai

where a natural basis consists of elements ei of M whose ith component is the identity
element of A and all other components are zero.

Definition 1.1.21. The rank of a free A-module M is the cardinality of a basis of M .

Definition 1.1.22. An A-module is finitely presented if there exists m,n ∈ Z+ such that
there is an exact sequence

A⊕n −→ A⊕m −→M −→ 0

We call this right exact sequence a presentation of M .

Definition 1.1.23. A ring A is noetherian if every ideal of A is finitely generated. Simi-
larly, an A-module M is noetherian if every submodule of M is finitely generated.

Proposition 1.1.24. Let M be an A-module and let N be a submodule of M . Then M is

noetherian if and only if both N and M/N are noetherian.

Proof. Suppose M is noetherian and let N be a submodule of M . Since a submodule of a
submodule is itself a submodule, by the noetherian property of M , any submodule of N is
finitely generated, giving us that N is noetherian.

Let us now consider the quotient moduleM/N and let φ : M →M/N be the surjection
m 7→ m + N . Let L be a submodule of M/N . Since the preimage of a submodule (under
a module morphism) is a submodule of the domain, i.e., φ−1(L) ⊆ M is a submodule, we
get that φ−1(L) is finitely generated. However, since φ is surjective, the finite number of
generators of φ−1(L) also generate all of the image of L under φ, giving us that L is finitely
generated.

Conversely, suppose N and M/N are noetherian. Let L be a submodule of M and
φ : M → M/N be the canonical surjection. Then it follows that L ∩ N and im(L) are
finitely generated as submodules of N and M/N , respectively. Let {xi}ki=1 ⊆ L be the
finite set that generates im(L) in M/N and let

{
yj
}r
j=1

be the finite set of generators for
L ∩N . Then for any m ∈ L, we get that

m =
k∑
i=1

aixi +N in M/N, where ai ∈ A
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and since the xi ∈ L by assumption, we get that

m−
k∑
i=1

aixi ∈ N ∩ L.

Since the
{
yj
}

generate N ∩ L, it follows that

m−
k∑
i=1

aixi =
r∑
j=1

bjyj

and so we get that

m =
k∑
i=1

aixi +
r∑
j=1

bjyj

giving us that L is finitely generated by the {xi}ki=1 and
{
yj
}r
j=1

.

Corollary 1.1.25. Let A be a noetherian ring. For any positive integer n ∈ Z+, the free

module A⊕n is noetherian.

Proof. We prove this by induction. For n = 1, we are done. Now assuming the statement
holds for any n ∈ N, consider the following short exact sequence

0 −→ A⊕n −→ A⊕n+1 −→ A −→ 0.

By the induction hypothesis, we have that A⊕n is noetherian and by Proposition 1.1.24, it
follows that A⊕n+1 is noetherian.

Corollary 1.1.26. Let A be a noetherian ring and let M be finitely generated A-module.

Then M is a noetherian A-module.

Proof. Since M is finitely generated, we have the exact sequence A⊕n → M → 0. Thus,
M is a quotient module of A⊕n, which we have shown is noetherian. Since the quotient
module of a noetherian module is itself noetherian, we conclude that M is a noetherian
A-module.

Proposition 1.1.27. If A is a noetherian ring, then every finitely generated A-module is

finitely presented.

Proof. Let M be a finitely generated A-module. Then there exists an exact sequence

A⊕m
f−→M −→ 0
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for some m ∈ Z+. Since A is finitely generated, we get that A⊕m is a finitely generated
A-module and therefore ker(f) is finitely generated, giving rise to another exact sequence

A⊕n −→ ker(f) −→ 0

for some n ∈ Z+. Combining the two sequences gives us our desired result.

1.2 Tensor Product

Definition 1.2.1. Let M,N,L be A-modules. A map f : M × N → L is A-bilinear if f
is A-linear in each variable, i.e., for all m,m′ ∈ M,n, n′ ∈ N, and a ∈ A, the following
axioms are satisfied:

1. f(m+m′, n) = f(m,n) + f(m′, n)

2. f(am, n) = af(m,n)

3. f(m,n+ n′) = f(m,n) + f(m,n′)

4. f(m, am) = af(m,n)

Even though M and N are A-modules, we note that M × N is simply a cartesian prod-
uct and does not necessarily have an A-action defined on it and therefore M × N is not
necessarily an A-module itself.

Example 1.2.2. Many operations in linear algebra are bilinear mappings. Let k be a field
and let V be a k-vector space.

1. Suppose k = R. Consider 〈·, ·〉 : V × V → R, the (real) inner product of a R-vector
space. It should be noted that the complex inner product is not bilinear, but rather
conjugate-linear in one of the variables.

2. Let M2×2(k) denote the space of 2 × 2 matrices over a field k. There are only 4
entries, but we can treat the matrix column-wise, giving us that M2×2(k) ∼= k2 × k2

is an isomorphism at the level of sets. Giving this a vector space structure via the
direct sum, we get

M2×2(k) ∼= k2 × k2 det−−→ k

gives us a bilinear map.
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Definition 1.2.3. Let M and N be A-modules. The tensor product of M and N over A is
an A-module M ⊗A N , together with a bilinear map ⊗ : M × N → M ⊗A N satisfying
the following universal property:

For every A-module L and every bilinear map f : M × N → L, there exists a unique
A-module morphism ϕ : M ⊗A N → L making the following diagram commute:

M ×N L

M ⊗A N

f

⊗ ϕ

The tensor product does exist in the category of A-modules and is unique up to unique
isomorphism. It is typically denoted as M ⊗A N . For proof of existence and uniqueness,
see [AM94] pages 24 and 25. We drop the subscript A if the base ring is clear.

Proposition 1.2.4. LetA be a ring, andM,N,L beA-modules and let {Mi}i∈I be a family

of A-modules. Then we have the following:

(a) M ⊗A N ∼= N ⊗AM .

(b) M ⊗A A ∼= M .

(c) (L⊗AM)⊗A N ∼= L⊗A (M ⊗A N).

(d) (
⊕

i∈IMi)⊗A N ∼=
⊕

i∈I(Mi ⊗A N).

(e) For all A-module morphisms f : M → N , there is an A-module morphism f ⊗ idL :

M ⊗ L→ N ⊗ L given by m⊗ ` 7−→ f(m)⊗ `.

Proof. See [AM94] page 26 for details.

Proposition 1.2.5 (Right-exactness of Tensors). Consider an exact sequence of A-modules

N ′
f−→ N

g−→ N ′′ −→ 0.

Then for any A-module M , the sequence

N ′ ⊗AM
f⊗idM−−−−→ N ⊗AM

g⊗idM−−−→ N ′′ ⊗AM −→ 0

is also exact.

Proof. See [AM94] pages 28 and 29 for details.
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Example 1.2.6. It is natural to ask if tensors are left exact as well. However, this fails
generally at the level of rings, and therefore at the level of modules as well, particularly
using Property (b) in Proposition 1.2.4. To see why, let n be a positive integer and consider
the left exact sequence

0 −→ Z −·n−−−→ Z.

Tensoring this sequence with Z/nZ over the base ring Z, we get

Z/nZ −·n−−→ Z/nZ

which sends every element to zero, i.e., ·n is the zero map and so left exactness is not
necessarily preserved.

1.3 Free Resolutions and Flatness

Definition 1.3.1. A free resolution of an A-module M is an exact sequence

· · · −→ F`
f`−−→ F`−1 → · · ·

f2−−→ F1
f1−−→ F0

f0−−→M → 0

where each F` is a free over A. If there exists a number ` ∈ N such that F` 6= 0 and
Fi = 0 for all i > `, then we say that the free resolution is finite with length `. If M has
a finite free resolution, the minimal length among all finite free resolutions of M is called
projective dimension of M and is denoted pd(M). If there is no free resolution of finite
length, then pd(M) =∞.

By convention, in a free resolution, Fi = 0 for all i < 0.
As we saw, the tensor product generally fails to be left exact. We can measure how

badly the tensor fails exactness using free resolutions and homology modules:
Let

F . : · · · −→ Fi+1
fi+1−−−−→ Fi

fi−−−→ Fi−1 −→ · · ·

be a free resolution of an A-module N . Then for any A-module M , we can consider the
following induced chain complex

M ⊗A F . : · · · −→M ⊗A Fi+1
idM⊗fi+1−−−−−−→M ⊗A Fi

idM⊗fi−−−−−→M ⊗A Fi−1 −→ · · · .

Definition 1.3.2. The Tor-modules TorAi (M,N) are defined to be

TorAi (M,N) = ker(idM ⊗ fi)/(im(idM ⊗ fi+1)) = Hi(M ⊗A F .).
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Thus, from this definition, we have that if i < 0, then TorAi (M,N) = 0 and moreover,
if i = 0, then TorA0 (M,N) = M ⊗A N .

Definition 1.3.3. Let A be a ring and let M be an A-module. Let C· be the sequence of
A-modules and morphisms

C. : · · · −→ N ′ −→ N −→ N ′′ −→ · · · .

Consider the sequence

C· ⊗M : · · · −→ N ′ ⊗M −→ N ⊗M −→ N ′′ ⊗M −→ · · ·

We say that M is flat over A if for every exact sequence C· the sequence C· ⊗M is again
exact. We say that M is faithfully flat if every sequence C· is exact if and only if C· ⊗M
is exact.

Definition 1.3.4. If f : A → B is a ring morphism, and B is flat as an A-module, we say
f is a flat morphism or B is a flat A-algebra.

Since flat A-modules preserve exactness of tensors, and Tor measures the failure of the
tensor product to be exact, we have the following proposition:

Proposition 1.3.5. An A-module M is flat if and only if TorAi (M,N) = 0 for every A-

module N for all i 6= 0.





Chapter 2

Syzygies

One method of better understanding an algebraic object is to decompose the object into
smaller components. One way of decomposing objects is to introduce a grading. In this
chapter, we take modules, module morphisms, and free resolutions from Chapter 1 and
introduce their graded counterparts. In Section 2.2, we will also introduce new invariants
called the Betti numbers, the graded Betti numbers, and the Castelnuovo-Mumford regu-
larity, which will provide us more information about our modules and ideals.

2.1 Graded Rings and Modules

Definition 2.1.1. Let (G,+) be an abelian monoid. A ring A is G-graded if it can be
written in the form

A =
⊕
g∈G

Ag,

where the Ag are abelian groups satisfying the multiplication property Ag · Ah ⊆ Ag+h for
all g, h ∈ G. Similarly, an A-module M is a G-graded A-module if M has a decomposi-
tion

M =
⊕
g∈G

Mg,

where the Mg are abelian groups satisfying the property AgMh ⊆Mg+h for all g, h ∈ G.
An ideal I ⊆ A is a graded ideal (or homogeneous) if I =

⊕
g∈G I ∩ Ag, i.e., I is

graded as an A-module.

Example 2.1.2. Let A = R[x0, . . . , xm] for some ring R. Denoting An to be the R-module
generated by homogenous polynomials of degree n, i.e.,

An =
{
p(x0, . . . , xm) : degree of individual terms of p(x0, . . . xm) = n

}
∪ {0} ,
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allows us to write
A =

⊕
n≥0

An

giving us that A is N-graded. If we allow Ai = 0 for all i < 0, then we have that A is
Z-graded as well.

Example 2.1.3. Let k be a field and consider the polynomial ring k[x, y]. Under the stan-
dard grading introduced in Example 2.1.2, the ideal (x2 + y) is not homogenous, but the
ideal (x2 + y2, y3) is homogenous.

Definition 2.1.4. Let M = ⊕g∈GMg be a graded A-module and let d ∈ G be fixed. Define

M(d) =
⊕
g∈G

M(d)g

with M(d)g := Md+g. Then M(d) is a graded A-module and is called the dth twist (or
shift) of M .

Definition 2.1.5. Let M,N be graded A-modules and consider a morphism f : M → N .
We say f is graded or homogeneous of degree d if f(Mn) ⊆ Nd+n for all n ∈ G.
We say M and N are isomorphic as graded A-modules if there exists a homogeneous
isomorphism between M and N .

Remark. If f : M → N is a morphism of degree d, then f : M(−d)→ N is a morphism
of degree 0.

Definition 2.1.6. A Z-graded A-module M is said to be free if there is an isomorphism of
graded A-modules

φ :
⊕
i∈I

A(ni) ∼= M, ni ∈ Z.

2.2 Studying Syzygies

Lemma 2.2.1 (Nakayama). Let A be a N-graded noetherian ring and let m denote the

homogenous maximal ideal of A, which is generated by forms of positive degree. Let M

be finitely generated graded A-module and let m1, . . . ,mn ∈ M generate M/mM . Then

m1, . . . ,mn generate M .

Proof. For a discussion of the proof, see [AM94], pages 21 and 22.

An example will be given after the few first definitions.
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Definition 2.2.2. Let A be a noetherian ring and M be a graded A-module. A graded free
resolution of M is a complex of free A-modules

· · · −→ F`
f`−−→ F`−1 → · · ·

f2−−→ F1
f1−−→ F0

f0−−→M → 0

where each fi is a degree 0 morphism and each Fi is free and of the form Fi = A(−d1)⊕
A(−d2)⊕ · · · ⊕ A(−dp) where A(−d) denotes the degree d twisted component of A, i.e.,
(A(d))t = Ad+t. If there exists a number ` ∈ N such that F` 6= 0 and Fi = 0 for all i > `,
then we say that the graded free resolution is finite with length `.

While constructing a graded free resolution of M is straightforward, we must be con-
cerned whether finite graded free resolutions of M exists. The proof of existence was
addressed and given by Hilbert for the case of polynomial rings over fields:

Theorem 2.2.3 (Hilbert’s Syzygy Theorem). Let k be a field and let M be an A-module

where A is the polynomial ring A = k[x1, . . . , xn]. If M is finitely generated, then M has

a finite graded resolution of length at most n, the number of variables in A.

Proof. See [Eis05], Section 2B on pages 20 and 21.

Example 2.2.4. Let A = k[x, y] and let I = (x2, xy, y3). Letting M be the quotient ring
A/I and viewing M as an A-module, the minimal resolution of M is given by

0←M ← A

[
x2 xy y3

]
←−−−−−−−−− A(−2)2 ⊕ A(−3)


y 0

−x y2

0 −x


←−−−−−−−− A(−3)⊕ A(−4)← 0.

We note that the length of this resolution is 2.

Definition 2.2.5. A graded free resolution

· · · −→ F`
f`−−→ F`−1 → · · ·

f2−−→ F1
f1−−→ F0

f0−−→M → 0

is said to be minimal if for each i, we have that im(fi) ⊆ mFi−1 where m denotes the
homogenous maximal ideal of the base ring of M .

Remark. Despite the discussion so far, it is not yet clear whether minimal graded free
resolutions exist for a given module, even for the case of a finitely generated A-module M
where A = k[x1, . . . , xn] as the free resolution given by Hilbert’s Syzygy Theorem is not



18 Chapter 2. Syzygies

necessarily minimal. Thus, we trim a given free resolution until it becomes minimal, justi-
fied by Theorem 2.2.6, and this can be done by selecting a minimal system of generators.

To see why we can pick a minimal system of generators, let M be a module over some
ring A and let

· · · −→ F`
f`−−→ F`−1 → · · ·

f2−−→ F1
f1−−→ F0

f0−−→M → 0

be a graded free resolution of M . We can consider the right exact sequence

Fi
fi−−→ Fi−1 −→ im(fi−1) −→ 0

and the induced right exact sequence

Fi/mFi
gi−−→ Fi−1/mFi−1

ϕ−→ im(fi−1)/m(im(fi−1)).

The former right exact sequence is minimal if and only if fi(Fi) ⊆ mFi−1, which is equiv-
alent to saying the map gi in the induced sequence is the zero map and by exactness, this
is true if and only if ϕ is an isomorphism, i.e., Fi−1/mFi−1 ∼= im(fi−1)/m(im(fi−1)). By
Nakayama’s Lemma, the generators of Fi−1/mFi−1 are also generators of Fi−1 and so ϕ
is an isomorphism if and only if Fi−1 maps to a minimal set of generators of im(fi−1).
Thus, without any loss of generality, we can assume all free resolutions are minimal unless
otherwise stated.

Noting that the construction of a minimal free resolution is artificial and dependent
on choices, we surprisingly get that all minimal free resolutions of a given module are
isomorphic to each other.

Theorem 2.2.6. Let M be a finitely generated A-module. If F and G are minimal graded

free resolutions of M , then there is a graded isomorphism of complexes F → G inducing

the identity map on M . Moreover, any free resolution of M contains the minimal free

resolution as a direct sum.

Proof. See Theorem 20.2 on page 491 in [Eis95].

Example 2.2.7. Let A = k[x, y] and I = (x4, x2y, y2) be an ideal of A. Let M be the
quotient ring A/I viewed as an A-module. A graded free resolution of M is given by

0←M ← A
X←−− A(-4)⊕ A(-3)⊕ A(-2)

Y←−− A(-5)⊕ A(-6)⊕ A(-4)
Z←− A(−6)3 ← 0
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where

X =
[
x4 x2y y2

]
, Y =

 0 -x4 -x2

-x2 0 y

y y2 0

 , Z =

 y y y

−1 −1 −1

x2 x2 x2

 .
We note that this graded free resolution is not minimal, as the third mapping has elements
not in the maximal ideal. Moreover, in the second mapping, we have a linear combination
between the columns: −x

4

0

y2

 = y

 0

−x2

y

+ x2

−x
2

y

0

 .
Thus to obtain the minimal graded free resolution, we trim the given resolution and obtain
that the minimal resolution is given by

0←M ← A

[
x4 x2y y2

]
←−−−−−−−−−− A(−2)⊕A(−3)⊕A(−4)


0 -x2

-x2 y

y 0


←−−−−−−−− A(−4)⊕A(−5)← 0.

Definition 2.2.8. Consider a minimal free resolution of M over A:

· · · −→ F`
f`−−−→ F`−1 → · · · → F1

f1−−−→ F0
f0−−−→M → 0.

The ith syzygy module of M is Ωi(M) = im(fi+1) = ker(fi). The rank of the ith syzygy
module is called the ith Betti number and is denoted as βi. Writing Fi =

⊕
A(−j), then

a graded minimal free resolution of M is of the form

· · · →
⊕
j

A(−j)β`,j → · · · →
⊕
j

A(−j)β1,j →
⊕
j

A(−j)β0,j →M → 0.

The exponents βi,j of the shifted modules A(−j) are called the graded Betti numbers of
M over A.

Example 2.2.9. Consider the previous example of minimal graded free resolution of M
where M = k[x, y]/(x4, x2y, y2) given by

0←M ← A← A(−2)⊕ A(−3)⊕ A(−4)← A(−4)⊕ A(−5)← 0.
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The 0th Betti number is 1, the 1st Betti number is 3, and the 2nd Betti number is 2. The
graded Betti numbers are β0,0 = 1; β1,2 = 1; β1,3 = 1; β1,4 = 1; β2,4 = 1; β2,5 = 1.

To keep track of all of the graded Betti numbers, it is convenient to display these in a
table. While it is ideal to place βi,j in the ith column and jth row, we note that all βij = 0

for j < i. Letting r denote the largest j in the minimal graded free resolution, we introduce
the Betti diagram of M to be

β(M) =


β00 β11 β22 · · · βnn

β01 β12 β23 · · ·
...

...
...

... · · · ...
β0r β1,1+r · · · · · · βn,n+r


and so the Betti number βi,j is placed in the ith column and (j − i)th row. So the Betti
diagram of Example 2.2.9 would be:

0 1 2


0 1 0 0

1 0 1 0

2 0 1 1

3 0 1 1

.

The ith Betti number can be retrieved by summing all entries in the ith column. Using these
Betti tables, we can identify the projective dimension of M since if

0 −→ F`
f`−−→ F`−1 → · · ·

f2−−→ F1
f1−−→ F0

f0−−→M → 0

is a finite minimal free graded resolution of M , then the definition of projective dimension
in Definition 1.3.1 gives us

pd(M) = sup {i : Fi 6= 0} = sup
{
i : βij(M) 6= 0 for some j

}
.

Definition 2.2.10. The Castelnuovo-Mumford regularity (or simply regularity) of a
module is defined to be

regA(M) = sup
{
j − i : βij(M) 6= 0

}
Thus, we can read the regularity of a module by looking at the index of the final nonzero
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row of its graded Betti table.

So ifM is the module in Example 2.2.9, we calculate that pd(M) = 2 and regA(M) = 3.
Although our concern about the choices made in the construction of a minimal graded

free resolution has been addressed in Theorem 2.2.6, we include a verification that the
graded Betti numbers are independent of these choices.

Proposition 2.2.11. If F· is the minimal free resolution of a finitely generatedA-moduleM ,

and if k is the residue fieldA/m, then any minimal set of homogenous generators of Fi con-

tains exactly dimk(TorAi (k,M)j) generators of degree j. That is, βij = dimk TorAi (k,M)j .

Proof. Let F· : · · · → F2
φ2−→ F1

φ1−→ F0 be a minimal free resolution of M . From this, it
follows that the complex k⊗A F· is

k⊗F· : · · · → k⊗A Fi −→ · · · −→ k⊗A F1 −→ k⊗A F0 −→ k⊗AM −→ 0.

However, since each Fi is a free module, it is isomorphic to bi copies of A and since
k⊗A A ∼= k, we get that the complex k⊗F· is isomorphic to

· · · −→ k⊕bi −→ · · · −→ k⊕b1 −→ k⊕b0 −→ k⊗AM −→ 0.

However, by the minimality of F·, we get that all of the differentials of k ⊗ F· are zero
maps and so we compute that Tori(k,M) = k⊗Fi. Thus, dimk(Tori(k,M)j) = bij but by
Nakayama’s lemma, we conclude that βij = bij .





Chapter 3

Rees Algebras and Regularity

The projective dimension, defined in Definition 1.3.1, and the Castelnuovo-Mumford reg-
ularity, introduced in Definition 2.2.10, are important tools in modern algebraic geometry
and commutative algebra, used to measure the complexity of a given module M . One
difference is that regularity also takes into account the degrees of the generators of M .
Computing the projective dimension and regularity can be quite difficult, requiring the
computation of syzygies and Gröbner bases.

We restrict our focus to homogeneous ideals. Given a homogenous ideal I in a polyno-
mial ring A = k[x1, . . . , xn], our main goal for this chapter is to study the complexity of
integral powers of I . To do this, we first define the Rees algebra of I , an algebraic object
that captures higher powers of the ideal, in Section 3.1. Studying the Rees algebra and tak-
ing its minimal free resolution then gives us information about the regularity and projective
dimension of Id for any d ∈ N. In Section 3.2, we go through a detailed example on how to
extract regularity and projective dimension from the Rees algebra of an ideal and in Section
3.3., we provide a bound on the regularity of Id using the Rees algebra.

3.1 Rees Algebras

Definition 3.1.1. Let I be an ideal in A. Let I = {In} be the I-adic filtration of A. The
Rees algebraR(I) is defined to be

R(I) =
⊕
n∈N

Intn = A⊕ It⊕ · · · ⊕ Imtm ⊕ · · · = A[It] ⊆ A[t],

where t is an indeterminate over A. Intuitively, the Rees algebra is an algebraic object
which captures all non-negative powers of an ideal I .
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Specializing to the case that A = k[x1, . . . , xn], the Rees algebra of a homogenous
ideal I = (f0, . . . , fk) carries a natural bigraded structure. To see the bigrading, let
B = k[x1, . . . , xn, w0, . . . wk] = A[w0, . . . , wk] be another polynomial ring. Define a ring
morphism

B −→ A[t] = k[x1, . . . , xn, t]

xi 7−→ xi

wj 7−→ fjt

and so we get that deg(xi) = (1, 0) and deg(wi) = (deg(fi), 1).

Example 3.1.2. Let I = (x4, x2y, y2) be an ideal ofR = k[x, y]. Denoting the Rees algebra
of I to be R[It], we get that R[It] is the quotient of the bigraded ring S = R[u, v, w] where
the degrees of the variables of S are given by

deg(x) = deg(y) = (1, 0);

deg(u) = (4, 1); deg(v) = (3, 1); deg(w) = (2, 1).

From this, we can explicitly compute the Rees algebra of I to be

R[It] = R[u, v, w]/(v2 − uw, x2v − yu, yv − x2w).

3.2 Resolutions of a Rees Algebras

Before diving into the general case, we first work out an example where we take free
resolutions of the Rees algebra of an ideal I to obtain the minimal free resolution of Id for
large enough d. From this, we can easily read the regularity of Id as well.

Taking Example 3.1.2 to be the set up, we compute a bigraded minimal free resolution
of R[It] over S, which gives us

0← R[It]← S
A←−− F1

B←−−− F2 ← 0

where F1 = S(-6, -2)⊕ S(-5, -1)⊕ S(-4, -1), F2 = S(-8, -2)⊕ S(-7, -2) and the mappings
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A and B are given by

A =
[
v2 − uw x2v − yu yv − x2w

]
and B =

 x
2 y

−v −w
−u −v

 .
Picking any power d in the second degree allows us to read off free resolutions (possibly
non-minimal) of Id. For example, if we pick the (∗, 2)-strand from this resolution, we
obtain the free resolution

0← R[It](∗,2) ← S(∗,2) ← F1,(∗,2) ← F2,(∗,2) ← 0.

Since we are restricting to the (∗, 2) degree in the bigrading, we follow the definition to
compute that R[It](∗,2) = I2t2. Moreover, we can compute that

S(∗,2) = Ru2 ⊕Ruv ⊕Ruw ⊕Rv2 ⊕Rvw ⊕Rw2.

Introducing the variables u′, v′, w′ to be placeholders for the u, v, w respectively, but with
the change in degrees such that

deg(u′) = deg(v′) = deg(w′) = (0, 1),

we can reintroduce the twists to compute that

S(∗,2) = R(−8)u′2 ⊕R(−7)u′v′ ⊕R(−6)u′w′ ⊕R(−6)v′2 ⊕R(−5)v′w′ ⊕R(−4)w′2.

Similarly, since F1,(∗,2) = S(−6,−2)(∗,2) ⊕ S(−5,−1)(∗,2) ⊕ S(−4,−1)(∗,2) and F2,(∗,2) =

S(−8,−2)(∗,2) ⊕ S(−7,−2)(∗,2), compute for each component,

S(−6,−2)(∗,2) = S(∗−6,0) = R(−6)

S(−5,−1)(∗,2) = S(∗−5,1) = R(−5)u⊕R(−5)v ⊕R(−5)w

= R(−9)u′ ⊕R(−8)v′ ⊕R(−7)w′

S(−4,−1)(∗,2) = S(∗−4,1) = R(−4)u⊕R(−4)v ⊕R(−4)w

= R(−8)u′ ⊕R(−7)v′ ⊕R(−6)w′

S(−8,−2)(∗,2) = S(∗−8,0) = R(−8)

S(−7,−2)(∗,2) = S(∗−7,0) = R(−7)
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to give us that

F1,(∗,2) = S(−6,−2)(∗,2) ⊕ S(−5,−1)(∗,2) ⊕ S(−4,−1)(∗,2)

= R(−6)⊕R(−9)u′ ⊕R(−8)v′ ⊕R(−7)w′ ⊕R(−8)u′ ⊕R(−7)v′ ⊕R(−6)w′

F2,(∗,2) = S(−8,−2)(∗,2) ⊕ S(−7,−2)(∗,2)

= R(−8)⊕R(−7).

It may be tempting to conclude that the Betti table might look something like

0 1 2


4 1 0 0

5 1 2 1

6 2 2 1

7 1 2 0

8 1 1 0

but we note that this cannot be an actual Betti table for any module or ideal, since our
resolution is non-minimal. If in the case that our resolution was said to be minimal with
this given table, then our resolution fails exactness. We also see that reg(I2) ≤ 8.

Analyzing the degree 0 graded morphism

S(∗,2)

[
v2 − uw x2v − yu yv − x2w

]
←−−−−−−−−−−−−−−−−−−−−−−−− F1,(∗,2)

we get

R(−6) R(−9)u′ R(−8)v′ R(−7)w′ R(−8)u′ R(−7)v′ R(−6)w′



R(−8)u′2 0 −y 0 0 0 0 0

R(−7)u′v′ 0 x2 −y 0 y 0 0

R(−6)u′w′ −1 0 0 −y −x2 0 0

R(−6)v′2 1 0 x2 0 0 y 0

R(−5)v′w′ 0 0 0 x2 0 −x2 y

R(−4)w′2 0 0 0 0 0 0 −x2

.

We will call matrix above G, as it is a ginormous matrix.
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Similarly, if we analyze the map

F1,(∗,2)


x2 y

−v −w
−u −v


←−−−−−−−− F2,(∗,2)

we compute that
R(−8) R(−7)



R(−6) x2 y

R(−9)u′ 0 0

R(−8)v′ −1 0

R(−7)w′ 0 −1

R(−8)u′ −1 0

R(−7)v′ 0 −1

R(−6)w′ 0 0

.

Call this second matrix H .
We begin trimming our free resolution by taking G and begin using row and column

operations onG. Denoting the columns ofG as C1, . . . , C7 and the rows ofG asR1, . . . R6,
perform the following operations:

1. R3 → R3 +R4; this is the new 3rd row;
2. C6 → C4 + C6; this is the new 4th column;
3. C3 → C3 + C5;
4. C3 → C3 − x2C1;
5. C6 → C6 − yC1;
6. Swap R4 ↔ R1.

Recording these row and column operations as elementary matrices, respectively, gives
us

EG =



0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and CG =



1 0 −x2 0 0 −y 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 1 0

0 0 1 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





28 Chapter 3. Rees Algebras and Regularity

such that

EGGCG =

R(−6) R(−9) R(−8) R(−7) R(−8) R(−7) R(−6)



R(−6) 1 0 0 0 0 0 0

R(−7) 0 x2 0 0 y 0 0

R(−6) 0 0 0 −y −x2 0 0

R(−8) 0 −y 0 0 0 0 0

R(−5) 0 0 0 x2 0 0 y

R(−4) 0 0 0 0 0 0 −x2

.

We note that this concretely informs us that our resolution of I2 is non-minimal as there
are entries that are not in the maximal ideal. Moreover, as we have composed G with EG
and precomposed it with CG, we have that EGGCG : C−1G F1,(∗,2) → EGS(∗,2) and in order
to preserve exactness, we must change our bases accordingly. Diagrammatically, we have
that

0 F2,(∗,2) F1,(∗,2) S(∗,2) I2 0

0 F2,(∗,2) C−1G F1,(∗,2) EGS(∗,2) I2 0

H

C−1
G

G

EG

C−1
G H EGGCG

This reduction does reveal that under a certain choice of bases, the degree 0 morphism
G is of the form

R(−6)⊕
(
R(−9)⊕R(−8)2 ⊕R(−7)2 ⊕R(−6)

)
−→ R(−6)⊕

 8⊕
j=4

R(−j)


(v, w) 7−→ (v, G̃w)

where w ∈ R(−9)⊕R(−8)2⊕R(−7)2⊕R(−6) and v ∈ R(−6) and G̃ is the lower right
block matrix in the matrix EGC.
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We will also begin the same procedure fo H . Recall that

H =

R(−8) R(−7)



R(−6) x2 y

R(−9)u 0 0

R(−8)v −1 0

R(−7)w 0 −1

R(−8)u −1 0

R(−7)v 0 −1

R(−6)w 0 0

.

and to preserve exactness under the change of basis, we compose H with C−1G ; computing
this change gives us

H̃ := C−1G H =



1 0 x2 0 0 y 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 −1 0

0 0 −1 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





x2 y

0 0

−1 0

0 −1

−1 0

0 −1

0 0


=



0 0

0 0

−1 0

0 0

0 0

0 −1

0 0


.

Given this, we can begin performing more elementary operations on H̃ and recording these
into another elementary matrices gives us

EH̃ =



0 0 −1 0 0 0 0

0 0 0 0 0 −1 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1


and CH̃ = I2.
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Using these matrices, we compute that

EH̃H̃ =

R(−8) R(−7)



R(−8) 1 0

R(−7) 0 1

R(−6) 0 0

R(−7) 0 0

R(−8) 0 0

R(−9) 0 0

R(−6) 0 0

.

Again we remark that this morphism is also non-minimal and that

EH̃H̃ : F2,(∗,2) −→ EH̃C
−1
G F1,(∗,2).

Using the following commutative diagram to keep track of all the changes,

0 F2,(∗,2) F1,(∗,2) S(∗,2) I2 0

0 F2,(∗,2) C−1G F1,(∗,2) EGS(∗,2) I2 0

0 F2,(∗,2) EH̃C
−1
G F1,(∗,2) EGS(∗,2) I2 0

H

id C−1
G

G

EG

C−1

H̃
=id

C−1
G H

E
H̃

EGGCG

id

E
H̃
C−1

G H EGGCGE
−1

H̃

we get that under this change of basis that the morphism EH̃C
−1
G H acts as the identity map

on a copy of R(−8)⊕R(−7)→ R(−8)⊕R(−7). Thus, we have that

R(−8)⊕R(−7)⊕ 0
(id,id,0)−−−−→ R(−8)⊕R(−7)⊕R5

where R5 = R(−6)2 ⊕R(−7)⊕R(−8)⊕R(−9).
Thus, we get that under a specific choice of bases, we get that the graded free resolution
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of I2 is

R(−6) R(−6)

⊕ ⊕

0 I2
⊕8

j=4R(−j)
⊕9

i=6R(−i) 0 0

⊕ ⊕
R(−7)⊕R(−8) R(−7)⊕R(−8).

id

id

We can now obtain minimality by trimming the resolution of spaces which get mapped
onto itself by the identity map and we get that the minimal graded free resolution of I2 is
now given by

0←− I2 ←−
8⊕
j=4

R(−j)←−
9⊕
i=6

R(−i)←− 0,

and therefore the graded Betti table for I2 is given by

0 1


4 1 0

5 1 1

6 1 1

7 1 1

8 1 1

.

From this, we conclude that reg(I2) = 8 and pd(I2) = 2.

3.3 A Bound on Regularity via Rees Algebras

Using the notation in Section 3.1, we are now ready to provide a bound on the regularity of
Id. Whieldon [Whi14] proved the same result in the case that the generators of I are all of
the same degree.

Theorem 3.3.1. Let A = k[x1, . . . , xn], d ∈ Z+ and I = (f0, . . . , fk) be a homogenous

ideal in A. Let B = A[w0, . . . , wk] with a Z2-bigrading of B given by bideg(xi) = (1, 0)

and bideg(wi) = (deg(fi), 1), i.e., B =
⊕

j,mB(−j,−m). We have an upper bound on
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the regularity of Id given by

reg(Id) ≤ max
0≤`≤k

j +
k∑
i=0

ai deg(fi)− ` : β`,j,m 6= 0,
k∑
i=0

ai = d−m

 .

Proof. Denoting A[It] to be the Rees algebra of I , and viewing it as a B-module, by
Hilbert’s Syzygy theorem, we get a bigraded free resolution, which we can take to be
minimal, given by

0← A[It]
φ0←−−
⊕
j,m

B(−j,−m)β0,j,m ← · · · φk←−−
⊕
j,m

B(−j,−m)βk,j,m ← 0.

Restricting to the (∗, d) degree in the bigrading, we obtain a graded free resolution of A-
modules, since a homogenous strand of an exact complex is itself exact,

0← A[It](∗,d) ←
⊕
j,m

B(−j,−m)
β0,j,m
(∗,d) ← · · · ←

⊕
j,m

B(−j,−m)
βk,j,m
(∗,d) ← 0.

However, we note that this graded free resolution of A-modules is not necessarily minimal.
At each free module, using the bigraded structure of the Rees algebra, we can compute

that
B(−j,−m)(∗,d) =

⊕
a∈Pk+1(d−m)
a=(a0,...,ak)

A(−j)wa00 wa11 · · ·w
ak
k

where a = (a0, . . . , ak) ∈ Nk+1 and Pk+1(N) denotes all possible partitions of N ∈ N
into k + 1 non-negative integers. Since each wi carries a bideg(wi) = (deg(fi), 1), we can
introduce placeholder variables vi such that bideg(vi) = (0, 1). From this, it follows that
each

A(−j)wa00 wa11 · · ·w
ak
k = A(−j −

k∑
i=0

ai deg(fi))v
a0
0 · · · v

ak
k .

Since the vi are simply placeholders, our (possibly non-minimal) free resolution of Id is
given by

0← Id ←
⊕
j,m

⊕
a∈Pk+1(d−m)
a=(a0,...,ak)

A(−j−
k∑
i=0

ai deg(fi))
β0,j,m ← · · ·

· · · ←
⊕
j,m

⊕
a∈Pk+1(d−m)
a=(a0,...,ak)

A(−j −
k∑
i=0

ai deg(fi))
βk,j,m ← 0.
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Thus, we have an upper bound on reg(Id) given by

reg(Id) ≤ max
0≤`≤k

j +
k∑
i=0

ai deg(fi)− ` : β`,j,m 6= 0,
k∑
i=0

ai = d−m

 .
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